Some New Asymptotic Theory for Least Squares Series: Pointwise and Uniform Results
نویسنده
چکیده
In econometric applications it is common that the exact form of a conditional expectation is unknown and having flexible functional forms can lead to improvements over a pre-specified functional form, especially if they nest some successful parametric economically-motivated forms. Series method offers exactly that by approximating the unknown function based on k basis functions, where k is allowed to grow with the sample size n to balance the trade off between variance and bias. In this work we consider series estimators for the conditional mean in light of four new ingredients: (i) sharp LLNs for matrices derived from the non-commutative Khinchin inequalities, (ii) bounds on the Lebesgue factor that controls the ratio between the L and L-norms of approximation errors, (iii) maximal inequalities for processes whose entropy integrals diverge at some rate, and (iv) strong approximations to series-type processes. These technical tools allow us to contribute to the series literature, specifically the seminal work of Newey (1997), as follows. First, we weaken considerably the condition on the number k of approximating functions used in series estimation from the typical k/n → 0 to k/n → 0, up to log factors, which was available only for spline series before. Second, under the same weak conditions we derive L rates and pointwise central limit theorems results when the approximation error vanishes. Under an incorrectly specified model, i.e. when the approximation error does not vanish, analogous results are also shown. Third, under stronger conditions we derive uniform rates and functional central limit theorems that hold if the approximation error vanishes or not. That is, we derive the strong approximation for the entire estimate of the nonparametric function. Finally and most importantly, from a point of view of practice, we derive uniform rates, Gaussian approximations, and uniform confidence bands for a wide collection of linear functionals of the conditional expectation function, for example, the function itself, the partial derivative function, the conditional average partial derivative function, and other similar quantities. All of these results are new. Date: First version: May 2006, This version is of January 7, 2015. Submitted to ArXiv and for publication: December 3, 2012. JEL Classification: C01, C14.
منابع مشابه
Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملOutlier detection algorithms for least squares time series regression 1
We review recent asymptotic results on some robust methods for multiple regression. The regressors include stationary and non-stationary time series as well as polynomial terms. The methods include the Huber-skip M-estimator, 1-step Huber-skip M-estimators, in particular the Impulse Indicator Saturation, iterated 1-step Huber-skip M-estimators and the Forward Search. These methods classify obse...
متن کاملUniform Moment Bounds of Fisher’s Information with Applications to Time Series by Ngai
In this paper, a uniform (over some parameter space) moment bound for the inverse of Fisher’s information matrix is established. This result is then applied to develop moment bounds for the normalized least squares estimate in (nonlinear) stochastic regression models. The usefulness of these results is illustrated using time series models. In particular, an asymptotic expression for the mean sq...
متن کاملExternal and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method
The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...
متن کاملLeast squares approximations of power series
The classical least squares solutions in C[−1,1] in terms of linear combinations of ul-traspherical polynomials are extended in order to estimate power series on (−1,1). Approximate rates of uniform and pointwise convergence are obtained, which correspond to recent results of U. Luther and G. Mastroianni on Fourier projections with respect to Jacobi polynomials.
متن کامل